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Cryptography in Parallel RAM (PRAM) Model

Background & Approach: and may suffer significant

In cryptography, a central question
is how to carry out desired
computation with desired security
(e.g., MPC & Delegation in Fig 1, 2).
The computation is typically
expressed as a circuit, and recent
works consider RAM model of
computation (see Fig. 3). However,
both models do not capture either
random data access or parallelism,

efficiency loss (cf. Fig. 4). We
suggested to develop the theory of
cryptography in the Parallel RAM
(PRAM) model, a model captures
both random data access and
parallelism.

Outcome & Significance:

We made major contributions in
developing the theory of
cryptography in the PRAM model.
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We initiated the study by
introducing and  constructing
Oblivious PRAM (OPRAM). We
showed general feasibility that
under  sufficiently strong
cryptographic assumptions, many
important

delegation

primitives, such as
schemes, secure

multiparty computations (MPC),
Secure Multi-Party Computation (MPC)

Jointly compute function f on secret inputs x,,...,x,
Learn only f(x,...,

X,,) but nothing else!
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Fig 1.
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and functional encryptions (FE),
could be constructed in the PRAM
model. further
investigated whether there is an
inherent parallel runtime overhead

for OPRAM compilers and resolved

Finally, we

the question by establishing nearly
tight upper and lower bounds.

Delegation of Computation

g Encode(P, x)
ﬂ Y, T

Client

Acc. / Rej.
* Client delegates computation of program P(x) to Server.
Server computes answer y = P(x) and proof i for verification.

* Client complexity: independent of complexity of P
— O(|P| + |x]) size encoding, O(|y|) verification time.
« Server complexity: preserve complexity of P

— O(Time(P, x)) for comp., O(Space(P, x)) for storage.

Fig 2.
Efficiency Gap
Comp. 3 Parallel
Problem Model Total Time Time
Binary search Circuit Qn)
(input size n) RAM 0(log n)
ircui O(log n)
Sorting Circuit
RAM (nlog n)
ircui on O(logn
Keyword search/ Gircut ) ( gn)
Range query RAM O(mlogn) | Q(mlog n)
(output size m) PRAM o(mlog n) olog )
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