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Hypothesis Testing of Causal Mediation

Background:
Causal mediation analyses have
been a popular approach investigating
the mechanism of an intervention
on an outcome. Causal mediation
involves two parameters, one for
the intervention-mediator(s)
association «a, and the other for
the mediator(s)-outcome association
[ (Figure, left). Hypothesis test of
causal mediation considers a null
hypothesis:

Hy:aff =0
which has two methodological
challenges: 1) the above null is a
composite null hypothesis:

Hy:{a =0, =0}U

{fa=0,+0}U

{a #0,p =0},
2) inadequacy of gaussian approxi-
mation for the test statistics.
Approach:
In the series of the work, | start

B FFORTRS  REER -

with the single-mediator analyses
where the single-mediator test is
conducted for one time, and then
extend to the multivariate
settings, dividing the problem
into: 1) multi-mediator testing for
one time (Huang, Annals of
Applied Statistics 2018), 2) single-
mediator testing for multiple
times (Huang, Annals of Applied
Statistics 2019), and 3) multi-
mediator testing for multiple
times (Huang, Biometrics 2019).
Outcome:

For multi-mediator testing for one
time, | propose intersection-union
tests for mediation effects in
multi-mediator analyses where
mediators are without ordering
(Figure, middle) or with ordering
(right), and prove the tests have
size alpha and more powerful
than the product tests. For single-
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mediator testing for multiple
times, | derive the following
approximation formula such that
the composition of null mixtures
can be adjusted to obtain a valid
p-value:

ab ab
,awm,,=p<m>+p(m)_p(ab>
where F(@) = f*mflj/jl; —uzfzdvdu,
a represents z-statistic of S-M
association «a in Figure [left], and
b represents z-statistic of M-Y
association [. Finally, for multi-

mediator testing for multiple

component score tests for both
a=0 and B =0, where |
further transform the mixture of
chi-squared distributed test
statistics to gaussians and account
for the composite null hypothesis
using the above formula.
Significance:

The series of work demonstrates
and addresses the challenges of
hypothesis testing for causal
mediation. The propose methods
are applicable to general testing
problems under the composite
null hypothesis.

times, | propose variance
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Figure. Causal mediation models. Left: single-mediator model; middle: multi-mediator
model with parallel mediators; right: multi-mediator model with sequentially ordered
mediators.
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